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Mode Charts for Magnetized Ferrite Cylinders

CHRISTIAN SCHIEBLICH

Abstract — Waveguide juuction circnfators in E - and H-plane technique

usuafly employ height-dependent ferrite modes. The most cruciaf parame-

ter is the frequency splitting between two angle-dependent modes. It rises

with the magnetic bias field until there is a maximum at about saturation.

In this contribution, mode charts are given which help the designer to look

up the resonance frequencies of the most important modes as a function of

the externaf, measurable field. Also, the unsaturated state of the ferrite

materiaf is covered. These dlagrmns are in good accordance with experi

mentaf experience and have been helpful in interpreting circulator perfor-

mance, especially for the identification of spurious resonances.

1. INTRODUCTION

JUNCTION circulators are based on the splitting of an

angle-dependent resonator mode in a ferrite cylinder by

a magnetic bias field. To determine the resonator dimen-

sions, mode charts are helpful. They should also give

information about the shift and splitting of the resonance

frequencies versus bias field.

Mode charts have been published for cylinders with

height-independent modes and magnetically conducting

edge [1], and they are a good approximation for the ferrites

in stnpline circulators. In [2], Helszajn and Sharp use the

magnetic wall model also for height-dependent modes of

magnetized ferrite cylinders. For an open flat face of the

ferrite, the magnetic wall assumption is replaced by a more

refined model. In [3], the same authors treat the EH1l,

resonance of a composite ferrite/dielectric structure with-

out assuming a magnetic azimuthal wall, but only in the

isotropic case. As early as 1967, Godtmann and Haas [4],

[5] published mode charts for a magnetized ferrite cylinder

between two metallic plates by an exact modal analysis,

also without the magnetic wall assumption. They do not

cover, however, the case of nonsaturated ferrites. An infi-

nite bias field is taken as an isotropic limit, and the

resonant frequencies are traced when reducing it until

maximum frequency splitting is reached at zero field. In

reality, however, the completely demagnetized ferrite is

also isotropic, and there is a maximum splitting between

zero and infinite bias field. This is found just in the

transition region between the unsaturated and the satu-

rated state. Because sensitivity y of the frequency splitting to

bias field variations (e.g., caused by temperature varia-
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tions) is also low at this maximum, this is the preferred

operating point for junction circulators.

For practical reasons, it is more appropriate to trace the

resonance frequencies with the bias field rising from zero

towards saturation. The infinite bias field, which is taken

in [4] and [5] as an isotropic limit, is only of academic

interest. Hauth [6], [7] has analyzed some rather general

open structures including the unsaturated state. His rigor-

ous analysis can be used to analyze the ferrite in its

specific environment, and it is not the intent of this paper

to replace such rigorous calculations. The mode charts

given here are only to help the designer in finding suitable

ferrite dimensions and the achievable frequency splitting,

as well as the frequencies of neighboring modes.

II. MICROWAVE PERMEABILITY OF

MAGNETIZED FERRITES

The elements of the permeability tensor (bias field k the

z direction),

[)

P –jK o
p= j~ p

o 1-lo (1)

o 0 p=

above saturation are given by the classical theory of Polder

[8], while for the unsaturated state usually the empirical

formulas of Green and Sandy [9] are used. Unfortunately

these two descriptions do not join continuously, so that the

practically important transient region is not correctly de-

scribed. Hansson and Filipsson [10] give formulas for the

whole range of bias fields, with even the derivatives of the

tensor elements being continuous:

P= Pe+(l–p.)m3/*+
h,

h;– W*

mw
K=— ~, = ~$1+’)

h;– W*
(2)

with the normalized values

M
h,=; m=—

s M.

W=:>l = – ypoM,

,.=$1+2/<;.

M, is the saturation magnetization, M the actual magneti-
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(a) (b)

(c) (d)

Fig. 1. Some resonator modes of the dielectric cylinder (bottom electric
wall, top magnetic wall: — electric field, –––– magnetic field):

(a) EHIw/z, (b) %~,/zl, (c) %1(1/2), (d) E%,(liz).

zation, H, the internal magnetic bias field, and y the

(negative) gyromagnetic ratio.

The external field H. is partitioned into the inner field

and the magnetization (flat disk, demagnetization factor

1). The ratio depends on the static magnetization charac-

teristics of the material. In [10] it is given as

Ha= A4+H,

H,=O forikf < M,= alfkf,

( iM= M,+(M, –M,) coth(a2HZ) –-& . (3)

M, is approximately the remanence magnetization. The

form factors al and a2 are tabulated in [10] for common

ferrite materials; their values are approximately al= 0.6,

and a ~ = 8 (A/m)- 1. These values have been used for the

following calculations.

III. RESONANCE FREQUENCIES IN THE

ISOTROPIC CASE

The ferrite will be treated as a piece of dielectric wave-

guide terminated by electric or magnetic walls at its end
surfaces. To a first approximation, the lateral wall can be

assumed as a perfect magnetic conductor; the eigenwaves

are then purely E (TM) or H (TE). Without assuming the

boundary as a magnetic wall, these modes, except those

with m = O, become the hybrid EHMn and HEwn waves.

The resonance frequencies are determined by the edge

conditions at the faces of the cylinder. Fig. 1 shows the

four lowest modes of such a resonator, which is bounded

by one electric and one magnetic wall. This approximates a

cylinder with one face bound to a metallic surface.

The resonance frequencies of the unmagnetized ferrite

can be calculated according to [12]. Fig. 2 shows the

[ R/h — 02505 075 1

EH31

HE,,

Eo,
EH21

H01

EHI,

2 3 4 5 6
I(R j

Fig. 2. Mode chart to determine resonant frequencies of the isotropic
dielectric cylinder (t, = 12.5; yf see Fig. 4).

normalized radial wavenumber k$’ )R in the ferrite cylinder

versus the wavenumber kR = kofiR in the ferrite. In a

closed circular waveguide, this wavenumber would be rep-

resented as a horizontal line, which cuts the ordinate at the

zeros of the Bessel function (H waves) or its derivative (E

waves). All wave types except the EH1l have a cutoff

frequency, below which the axial propagation constant

becomes imaginary.

The curves in Fig. 2 have been calculated by [12], which

has been generalized to pZ # 1. It is the solution of

U.V–W2=0 (4)

with

1 K;(y)
u= L;(x)+——Jn(x)

x C,Y K.(Y)

1 K:(y)
v= L;(x)+- —J.(x)

x IJZY K.(Y)

(5)

where Jn( x ) and Jn’( x ) are the Bessel function of the first

kind, n th order, and its derivative; Kn(y) and K;(y) are

the modified Hankel function. n th order. and its deriva-

tive; k = kofi with k. = ti&; x = kfzJR; /3R

=~(kR)2- x2; and y=k~a)R=~(~R)2-( koR)2.

The second family of curves is given by the height-

dependent index 1 of the resonator mode from the condi-

tion

These are hyperbolas with the parameter lR /h. The ab-

scissa value of the intersection point yields the normalized

wavenumber kR. It must be denormalized to achieve the
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Fig. 3. Resonator with dielectric spacers between two infinite metallic

walls.

resonant frequency

(7)

The value 1 is only known exactly if the ferrite rod is

placed between two electric or magnetic walls (integer 1) or

between an electric and a magnetic one (half-integer 1). An

open end of the resonator is only approximately a mag-

netic wall, as the fields extend to the space beyond the

surface. Whereas this is generally a good assumption for E

or EH waves in the ferrite rod, it maybe insufficient for H

and HE waves, which are more strongly affected by the

imperfect magnetic wall boundary because of their higher

field wave impedance.

To achieve more exact results in this case, the method of

Itoh and Rudokas [11], [12] can be employed. To analyze

the structure of Fig. 3, where the ferrite is mounted with

dielectric spacers of thicknesses dl and d2 and relative

dielectric constants C,l and C,2 between two electric walls,

the transversal field components are matched at the plane

boundaries, The waves in the dielectric spacers are as-

sumed evanescent and purely transversal; hence the axial

components are not matched. This makes an error of the

order of 2 percent [12] for the I& and HE~n, resonance

frequencies. The approximation is better the smaller the

gaps dl and d2 are. The resulting condition, which is

generalized from [12, eq. (4.107)], for H and HE modes is

(@ = ml = wp + arctan ~ coth (aldl)
)

(

p=a2
+ arctan — coth(azdz)

b’ )

(p=0,1,2,...) (8)

and for E and EH modes is

(E,lP
/3h = 7rl = mp – arctart — coth ( aldl)

c,Crl )

(

cr2P
– arctan —coth(a2d2)

cra.2 )

(p=l,2,3,...) (9)

where

f?=; /@ijc@)’

a]2=w=%(kR)2“0)
If one of the electric walls is replaced by a magnetic wall

(e.g. the center symmetry plane in an E-plane circulator),

the corresponding coth function in (8) and (9) has to be

replaced by the tanh function. Equations (8) and (9) with

(10) are implicit relationships between (kR) and (k$’JR).

Their locus curves can replace the hyperbolas of (6) for the

second resonance condition. They clepend on the parame-

ters h/R, d1,2/R, cr1,2/(pztr), and p. Unfortunately (8)

and (9) cannot be solved analytically for kR or (k$’)R).

In practice, however, this need not be done. Utilizing a

simple pocket calculator and the diagram Fig. 2, the reso-

nant frequencies can be found by an iterative procedure:

1)

2)

3)

4)

5)

Assume an initial value for 1 (e.g. using the mag-

netic wall condition).

Interpolate the hyperbola with the parameter lR/h

in Fig. 2.

Look up the coordinates (kR, x = kj’)R ) of the in-

tersection of this hyperbola with the dispersion curve

of the mode under investigation.

Calculate the value of 1 resulting from (8) or (9),

respectively.

Compare this value of 1 with the former one. If

there- is still a considerable deviation, go back to

point 2; otherwise the correct resonance frequency

has been found.

Usually, after the second iteration the frequency is already

settled. This can be checked in a third iteration step.

According to [12], the accuracy of this method (i.e., the

simultaneous solution of (4) and (8)/(9)) is within 6 per-

cent for the Hell mode. For the E and EH modes it can

be expected to be better. The accuracy is also greatly

improved if electric walls are not too far away from the

ferrite surfaces. (If they contact the ferrite, the solution is

exact!) This is the case for most junction circulators.

At this point, some remarks must be made concerning

the material parameters c, and p=. The diagram in Fig. 2

and all following diagrams are calculated for c, =12.5, a

usual value for microwave ferrites. Slight deviations from

this value (say 10.0 . 15) do not affect the shape of the

curves significantly, so they can sl,ill be used. Obviously,

the correct value of t, must be used for the renormaliza-

tion after (7). The same consideration holds for p,, which

is slightly lower than 1. As this value is a function of

w = a/u~ (2), we must fix a relation between the operat-

ing frequency and the saturation magnetization. For the

diagrams given here this has been chosen to make the

frequency for which kR = 1.84 (the .EIIO resonance of a

resonator with magnetic wall, whit h is a sort of lower limit

for all height-dependent resonance frequencies) correspond

to the normalized frequency w =1.3. This is a common

choice for the lower limit of the (operating bandwidth to



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 10, OCTOBER 19891558

7

1.0

2

.0

.6

_.-.----—---— -—- ----------------------- “-”

,
t

1.2 3 4 5 6 ---k R 7
t I I
2 3 ~ W= WIWrn

Fig. 4. p= element of the permeability tensor versus normalized

frequency.

ensure that low-field loss is negligible. The element p=,

which is needed for calculating the frequency by (7), is

shown in Fig. 4 versus frequency for various magnetic

fields. To facilitate the use of the mode charts, in addition

to w = O/am, also kR = (1.84/l .3)( Q/tJ~) has been given

on the abscissa.

IV. RESONANCE FREQUENCIES OF THE

MAGNETIZED FERRITE

The procedure for calculating the eigenfrequencies with

the magnetized ferrite can be taken from [4] or [13] with

the modifications for p= # 1 added. For the sake of brevity,

only the final results of this tedious analysis shall be given.

Inside the ferrite, the longitudinal electric field E= of a

wave traveling in the z direction with the propagating

constant /? must obey one of the differential equations

(v~+k~)Ez=O or (v~+k~2)Ez=0 (11)

with Vt the transversal components of the nabla operator,

and

# – K2

P eff –
—— k = ti~z”. (12)

P

The solutions corresponding to ktl and k,, being called

E= ~ and EZ2, the other field components can be expressed
by

H 21,2 = .i%~,2E,~,2

&= – .i4,2vt&,2 + B@t ~ E.&

Htl .’ = Cl,2VtE,l,2 + jD@t X E,1,2~~ (13)

with the coefficients

(14)

In the limit of K -+ O or ~ -+ O, the solution with ktl

approaches an E wave, and that with ktz an H wave. The

actual field in the ferrite is now expressed as a superposi-

tion of these two solutions. This means for E=:

E)z) = { anzn(ktlr) + bnJj(kt2r) } ejn~e-j~’. (15)

J.(x) is the Bessel function generalized to complex argu-

ments (J.( jx) = j“l.(x )). The other field components are
calculated by (13).

For the external region, decaying TE and TM waves

with modified Hankel functions are superposed. The

boundary conditions at r = R yield the following charac-

teristic equation:

ulv, – U2V1= o (16)

with

Ul,2=J.(k,l,’R) .[;(A1,2+$)-B,,,2ZO::[:;

– kt1,2B1,2J~(kt1,2R)

[(

k. K~(gR)

vl,2=Jn(h,2R)” ; G,2+%12

)

zo– —
g’ g Kn(gR)

– kf1,2D1,2J:(kt1, zR)

(17)

This equation replaces (4) in the anisotropic case.

Equation (16) with (17) has been solved numerically.
The elements of the permeability tensor are calculated by

(2). For a fixed value of kR, the normalized propagating

constant /3R is evaluated. If the ferrite radius is stepped

monotonically, a good starting value for ~R can be extrap-

olated from the calculations already done, so that the zero
is found very fast. In Figs. 5 to 8 the result is shown for the

EH1ll, the HEoll, the EHOI1, and the EH21[ mode. The first
equation of (14) reveals that for B=1,2# O or infinity there

are always E= as well as Hz components; even the modes

with the azimuthal index O are of hybrid character if the

ferrite is magnetized. As in Fig. 2, instead of ~R the radial

wavenumber in the ferrite k~’)R is given as the ordinate,
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Fig. 5. Mode chart to determine the EHII, resonant frequency of
magnetized ferrite cyfinder (cr=12.5; ~f seel+g. 4).
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Fig. 6. Mode chart to determine the HEOI, resonant frequency of the
magnetized ferrite cylinder (c, =12.5; pf see Fig. 4).

which is defined as in the isotropic case as k$z)

=~=(-. I. contrast to the isotropic

case, this is a fictitious number, because physically there is

a superposition of fields with both transversal wavenum-

hers ktl and k,2 in the ferrite. In certain regions one of

these becomes imaginary; the corresponding part of the

field is then guided at the ferrite-air boundary and decays

aperiodically in both directions (edge-guided modes). In

height-independent structures (stripline circulators) there

are even modes with all the field guided in this way (for

Peff ~ 0). There iSj howeverj nO necessity to treat them in a
special way, because resonance frequencies vary continu-

ously at the transition from radially periodic to aperiodic

modes. This is also accentuated by a recently presented

microstrip circulator, whose operating bandwidth covers

this transition [14]. In Figs. 5 to 8 the eigenvalues with

negative order n are shown with negative h.. In fact,

inverting the bias field (K ~ – K) is equivalent to changing

the direction of polarization. For the angle-dependent

modes, frequency splitting strongly increases with the field

in the unsaturated region, while it remains constant or

even decreases at higher fields h. >1 to become zero again

for h ~ ~ co. It is worth noting that the lower split fre-

quency, which decreases with rising h. for low bias fields,

4.5

4.0

3.5

3.0

2.5

[R/h — 025 05 075 1 125

E3

/,, ,,’ ,’ ,L ,.+----,-
EHO, ,, ,, ,“- =-r - ~,. -

.’ , “~- ./,.’----~.-‘.-/’ ,,, 07. -,~. -’
10-.:.-”- , 1)~,’ -’ .-<--- . _.-$---,’ ,,+: :, <.--_ #-- ,

, ,,,/:, ,z.~--- , ,0/01 15,’//,,~ < h ,, ;,/,,,., ,, ~,, ,’ ,’
/’ ,, ,’ ,’

,4’,; ,,< ,’
,,</ ,, .’ ,’ ,’/’,,,,, , ,, ,’ ,’/’,,, ,, ,’ ,’ ,’

,, ://” .’ ,’ ,’ /’
,’ ,’,, /’, /’,’ ,’ ,’ ,’,, ,, / /’ ,’,’ , ,’ ,’ ,’

3 4 5 6
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Fig. 7. Mode chart to determine the EHOl{ resonant frequency of the
magnetized ferrite cylinder (c, = 12.5; pf see Fig. 4).
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Fig. 8. Mode chart to determine the EH21, resonant frequency of
magnetized ferrite cylinder (6, = 12.5; pf see Fig. 4).

15

the

rises again for h. ~ 1. Due to the change in p .ff the

angle-independent fiodes HEO1 and EHO1 also change

their resonance frequencies, namely in opposite directions.

Relative frequency splitting is largest at small lR /h; i.e.,

the disks should not be too flat. Furthermore, this means a

larger distance between the E+ 111and those with a higher

order angle dependence, so that the latter cannot cause ‘

unwanted resonances in the operating bandwidth. Splitting

of about 40 percent can be achieved.

The diagrams in Figs. 5 to 8 have been used in [15] to

identify resonances of the S-parameter eigenvalues mea-

sured in waveguide circulators. For a ferrite rod reaching

from one circulator wall to the other, the predictions were

exact within the limits of the graphical readout. This is not

surprising, because the axial index is an integer and exactly

known. The resonant frequencies of the height-indepen-

dent modes are determined by the lateral boundaries of the

junction. They cannot be found by only analyzing the

ferrite cylinder, because the RF fields extend to infinity.

But as this is only a two-dimensional problem, the exact

analysis is not too difficult. It lhas been done by the
method of Davies [16].

For partial-height ferrite resonators, there is the problem

of finding the correct axial index. It has been solved in the

manner described in Section III for the dielectric res-

onator. As the hybrid character of the ferrite modes is

more accentuated, the error in the resonance frequencies
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Fig. 9. Mode chart to determine the height-independent modes of a
ferrite cylinder with magnetic wafl.

can be up to 10 percent for the HEOII modes; for the

EH~nl modes some 4 percent are reached. This is sufficient

for the identification of spurious resonances. For more

exact calculations of circulators including spurious res-

onator modes, very extensive three-dimensional calcula-

tions must be performed, as described in [6] and [17] -[19].

For completeness, a diagram for the height-independent

resonator modes will also be given; these modes play the

essential role in stripline and microstrip circulators. As

height-independent modes in radially open structures al-

ways radiate, there must be a conducting radial boundary,

in the simplest case a magnetic wall around the ferrite.

Neglecting fringing fields, it is defined by the periphery of

the metallization above the ferrite. The solution is simple

and has been given e.g. in [1] versus the magnetic splitting

K/p. As this value also depends on frequency, this chart is

not very helpful for the design. The diagram of Fig. 9

shows instead the normalized resonance frequencies versus

the external magnetic bias field h ~. The achievable fre-

quency splitting is generally larger than that for height-

dependent modes, because there are no axial magnetic RF

components which. do not contribute to nonreciprocity.
Above saturation (ha ~ 1) the E+ ~1 and the E_zl modes

have nearly the same re~onant frequency. Both modes are

bound to the same eigenexcitation, so that one of them can

take over the role of the other. This is the case for the

“continuous tracking” circulator in [20].

V. CONCLUSIONS

Mode charts have been given for the transversal

wavenumber in ferrite rods versus the material wavenum-

ber of the demagnetized ferrite. If a piece of this rod is

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

terminated by conducting walls, the exact frequencies of

the resonator installed in this way can be found by a

simple graphical procedure. If one or both ends of the

ferrite are left open, a modified procedure leads to approx-

imate values for the frequencies, which may deviate from

the true values by up to 10 percent. The diagrams are

intended to estimate the frequencies of wanted and un-

wanted resonances in junction circulators

calculations.
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