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Mode Charts for Magnetized Ferrite Cylinders

CHRISTIAN SCHIEBLICH

Abstract — Waveguide junction circulators in E- and H-plane technique
usually employ height-dependent ferrite modes. The most crucial parame-
ter is the frequency splitting between two angle-dependent modes. It rises
" with the magnetic bias field until there is a maximum at about saturation.
In this contribution, mode charts are given which help the designer to look
up the resonance frequencies of the most important modes as a function of
the external, measurable field. Also, the unsaturated state of the ferrite
material is covered. These diagrams are in good accordance with experi-
mental experience and have been helpful in interpreting circulator perfor-
mance, especially for the identification of spurious resonances.

1. INTRODUCTION

UNCTION circulators are based on the splitting of an

angle-dependent resonator mode in a ferrite cylinder by
a magnetic bias field. To determine the resonator dimen-
sions, mode charts are helpful. They should also give
information about the shift and splitting of the resonance
frequencies versus bias field. .

Mode charts have been published for cylinders with
height-independent modes and magnetically conducting
edge {1}, and they are a good approximation for the ferrites
in stripline circulators. In [2], Helszajn and Sharp use the
magnetic wall model also for height-dependent modes of
magnetized ferrite cylinders. For an open flat face of the
ferrite, the magnetic wall assumption is replaced by a more
refined model. In [3], the same authors treat the EH;,
resonance of a composite ferrite /dielectric structure with-
out assuming a magnetic azimuthal wall, but only in the
isotropic case. As early as 1967, Godtmann and Haas [4],
[5] published mode charts for a magnetized ferrite cylinder
between two metallic plates by an exact modal analysis,
also without the magnetic wall assumption. They do not
cover, however, the case of nonsaturated ferrites. An infi-
nite bias field is taken as an isotropic limit, and the
resonant frequencies are traced when reducing it until
maximum frequency splitting is reached at zero field. In
reality, however, the completely demagnetized ferrite is
also isotropic, and there is a maximum splitting between
zero and infinite bias field. This is found just in the
transition region between the unsaturated and the satu-
rated state. Because sensitivity of the frequency splitting to
bias field variations (e.g., caused by temperature varia-
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tions) is also low at this maximum, this is the preferred
operating point for junction circulators.

For practical reasons, it is more appropriate to trace the
resonance frequencies with the bias field rising from zero
towards saturation. The infinite bias field, which is taken
in {4] and [5] as an isotropic limit, is only of academic
interest. Hauth [6], [7] has analyzed some rather general
open structures including the unsaturated state. His rigor-
ous analysis can be used to analyze the ferrite in its
specific environment, and it is not the intent of this paper
to replace such rigorous calculations. The mode charts
given here are only to help the designer in finding suitable
ferrite dimensions and the achievable frequency splitting,
as well as the frequencies of neighboring modes.

II. MICROWAVE PERMEABILITY OF
MAGNETIZED FERRITES

The elements of the permeability tensor (bias field in the
z direction),

po —Jjk O
ij’: Jk 4 0 Ko (1)
0 0 p,

above saturation are given by the classical theory of Polder
[8], while for the unsaturated state usually the empirical
formulas of Green and Sandy [9] are used. Unfortunately
these two descriptions do not join continuously, so that the
practically important transient region is not correctly de-
scribed. Hansson and Filipsson [10] give formulas for the
whole range of bias fields, with even the derivatives of the
tensor elements being continuous:
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M_ is the saturation magnetization, M the actual magneti-
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Fig. 1. Some resonator modes of the dielectric cylinder (bottom electric
wall, top magnetic wall; electric field, ———— magnetic field):

(2) EH 1y 2y, (b) Hy1 ymy0 () Eya 2, (d) EHyg -

zation, H, the internal magnetic bias field, and y the
(negative) gyromagnetic ratio.

The external field H, is partitioned into the inner field
and the magnetization (flat disk, demagnetization factor
1). The ratio depends on the static magnetization charac-
teristics of the material. In [10] it is given as

H,=M+H,
H,=0 forM <M, =a; M,

M=M,+(M,— M,)|coth(a,H,)— (3)

a,H,

M, is approximately the remanence magnetization. The
form factors a, and a, are tabulated in [10] for common
ferrite materials; their values are approximately a; = 0.6,
and a, =8 (A/m) L. These values have been used for the

following calculations.

III. RESONANCE FREQUENCIES IN THE
IsoTrOPIC CASE

The ferrite will be treated as a piece of dielectric wave-
guide terminated by electric or magnetic walls at its end
surfaces. To a first approximation, the lateral wall can be
assumed as a perfect magnetic conductor; the eigenwaves
are then purely E (TM) or H (TE). Without assuming the
boundary as a magnetic wall, these modes, except those
with m =0, become the hybrid EH,,, and HE,  waves.
The resonance frequencies are determined by the edge
conditions at the faces of the cylinder. Fig. 1 shows the
four lowest modes of such a resonator, which is bounded
by one electric and one magnetic wall. This approximates a
cylinder with one face bound to a metallic surface.

The resonance frequencies of the unmagnetized ferrite
can be calculated according to [12]. Fig. 2 shows the
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Fig. 2. Mode chart to determine resonant frequencies of the isotropic
dielectric cylinder (¢, =12.5; p see Fig. 4).

normalized radial wavenumber k(R in the ferrite cylinder
versus the wavenumber kR = kO\/fE R in the ferrite. In a
closed circular waveguide, this wavenumber would be rep-
resented as a horizontal line, which cuts the ordinate at the
zeros of the Bessel function (H waves) or its derivative (E
waves). All wave types except the EH); have a cutoff
frequency, below which the axial propagation constant
becomes imaginary.

The curves in Fig. 2 have been calculated by [12], which
has been generalized to p_ #1. It is the solution of

UV-W2=0 (4)
with

1 1 K, ()
U= 5+ )

1 1 K, (y)
AT SO

B(1 5
W=n‘k“ ?-f-;? J, (x) (5)

where J,(x) and J/(x) are the Bessel function of the first
kind, nth order, and its derivative; K,(y) and K/(y) are
the modified Hankel function, nth order, and its deriva-
tive; k=rkyne, with ko= w/pgeo; x=kWR;, BR

= (kR)*—x?; and y = k(PR =\(BR)*~ (koR)*.
The second family of curves is given by the height-
dependent index / of the resonator mode from the condi-

tion

ph=\(kRY (kR ©=at.  (6)

These are hyperbolas with the parameter IR /h. The ab-
scissa value of the intersection point yields the normalized
wavenumber kR. It must be denormalized to achieve the
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resonant frequency
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The value / is only known exactly if the ferrite rod is
placed between two electric or magnetic walls (integer /) or
between an electric and a magnetic one (half-integer /). An
open end of the resonator is only approximately a mag-
netic wall, as the fields extend to the space beyond the
surface. Whereas this is generally a good assumption for E
or EH waves in the ferrite rod, it may be insufficient for H
and HE waves, which are more strongly affected by the
imperfect magnetic wall boundary because of their higher
field wave impedance.

To achieve more exact results in this case, the method of
Itoh and Rudokas [11], [12] can be employed. To analyze
the structure of Fig. 3, where the ferrite is mounted with
dielectric spacers of thicknesses d; and d, and relative
dielectric constants €,, and ¢,, between two electric walls,
the transversal field components are matched at the plane
boundaries. The waves in the dielectric spacers are as-
sumed evanescent and purely transversal; hence the axial
components are not matched. This makes an error of the
order of 2 percent [12] for the H,,, and HE, , resonance
frequencies. The approximation is better the smaller the
gaps d; and d, are. The resulting condition, which is
generalized from [12, eq. (4.107)], for H and HE modes is

O
Bh = nl = wp + arctan ( % coth (aldl))

0
+ arctan ( M—B—z— coth(azdz))

(p=0,1,2,...) (8)
and for E and EH modes is
€rlﬁ
Bh=al=mp —arctan(—e— coth(aldl))

ST

Er
—arctan ( 2P coth ( azdz))

€0,

(p=1,2,3,...) (9
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where

= i\/(kR)z—(kf"XR)2

——\/ (kOR)’ ‘”(kR) (10)

If one of the electric walls is replaced by a magnetic wall
(e.g. the center symmetry plane in an E-plane circulator),
the corresponding coth function in (8) and (9) has to be
replaced by the tanh function. Equations (8) and (9) with
(10) are implicit relationships between (kR) and (k’R).
Their locus curves can replace the hyperbolas of (6) for the
second resonance condition. They depend on the parame-
ters h/R, dy,/R, €, ,/(p.€,), and p. Unfortunately (8)
and (9) cannot be solved analytically for kR or (k{R).
In practice, however, this need not be done. Utilizing a
simple pocket calculator and the diagram Fig. 2, the reso-
nant frequencies can be found by an iterative procedure:

1) Assume an initial value for / (e.g. using the mag-
netic wall condition).

2) Interpolate the hyperbola with the parameter /R /h
in Fig. 2.

3) Look up the coordinates (kR, x = k“'R) of the in-
tersection of this hyperbola with the dispersion curve
of the mode under investigation.

4) Calculate the value of / resulting from (8) or (9),
respectively.

5) Compare this value of / with the former one. If
there is still a considerable deviation, go back to
point 2; otherwise the correct resonance frequency
has been found.

Usually, after the second iteration the frequency is already
settled. This can be checked in a third iteration step.

According to [12], the accuracy of this method (i.e., the
simultaneous solution of (4) and (8)/(9)) is within 6 per-
cent for the Hy, mode. For the £ and FH modes it can
be expected to be better. The accuracy is also greatly
improved if electric walls are not too far away from the
ferrite surfaces. (If they contact the ferrite, the solution is
exact!) This is the case for most junction circulators.

At this point, some remarks must be made concerning
the material parameters ¢, and p,. The diagram in Fig. 2
and all following diagrams are calculated for ¢,=12.5, a
usual value for microwave ferrites. Slight deviations from
this value (say 10---15) do not affect the shape of the
curves significantly, so they can still be used. Obviously,
the correct value of e, must be used for the denormaliza-
tion after (7). The same consideration holds for p_, which
is slightly lower than 1. As this value is a function of
w=w/w, (2), we must fix a relation between the operat-

" ing frequency and the saturation magnetization. For the

diagrams given here this has been chosen to make the
frequency for which kR =1.84 (the E,;, resonance of a
resonator with magnetic wall, which is a sort of lower limit
for all height-dependent resonance frequencies) correspond
to the normalized frequency w =1.3. This is a common
choice for the lower limit of the operating bandwidth to
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Fig. 4. p. element of the permeability tensor versus normalized
frequency.

ensure that low-field loss is negligible. The element p.,,
which is needed for calculating the frequency by (7), is
shown in Fig. 4 versus frequency for various magnetic
fields. To facilitate the use of the mode charts, in addition
to w=w/w, also kR =(1.84/1.3)(w/w,,) has been given
on the abscissa.

IV. RESONANCE FREQUENCIES OF THE
MAGNETIZED FERRITE

The procedure for calculating the eigenfrequencies with
the magnetized ferrite can be taken from [4] or [13] with
the modifications for p, #1 added. For the sake of brevity,
only the final results of this tedious analysis shall be given.
Inside the ferrite, the longitudinal electric field E, of a
wave traveling in the z direction with the propagating
constant 8 must obey one of the differential equations

(11)

with ¥, the transversal components of the nabla operator,
and

1 € z
thams [P (5] 5 )
1\/ it M, g K\
+ = [kz(———l +/32(———1)] +(2,8k—)
2 b, [ p

2
k= va‘zernu'OGO -

The solutions corresponding to &k, and k, being called
E,; and E_,, the other field components can be expressed
by

(VE+k2)E,=0 or (V2+k3)E =0

p—x
©

(12)

Megr =

H:_'l,2 = szl,ZEzl,Z

—

E ,=—jA4 NE, ,+ B, ~V,XE, ,e,

H,,=C, NVE, ,+ jD; V,XE, .e,

(13)
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with the coefficients

Fetr
;Bk k? . B*— ki,
B,,=Y P =Y —
k "u‘ﬁ — ki ;Bk
4 B kB, ,Z
1,2-— k[21’2 1,27 kt21,2
I
22 p2
c pY g B b ; D kY
L2 kk | kA, b2k,
1 :
Z— o Bzl (14)
Y €£9

In the limit of x —0 or 80, the solution with &,
approaches an E wave, and that with k,, an H wave. The
actual field in the ferrite is now expressed as a superposi-
tion of these two solutions. This means for E,:

Ez(t)= {an_Jn(kar)"‘bn_Jn(ktzr)}ej”¢€_JBZ, (15)

J.(x) is the Bessel function generalized to complex argu-
ments (J,(jx) = j"I,(x)). The other field components are
calculated by (13).

For the external region, decaying TE and TM waves
with modified Hankel functions are superposed. The
boundary conditions at r = R yield the following charac-
teristic equation:

UV, = UV =0 (16)

with
. 8 ko Ki(gR) ]
U2= (kg oR) | 2l At —5 | = BaoZo 2y
1,2 _n( 11,2 ) _R( 1,2 gz) 1.2 Og Kn(gR)_

- kt1,2B1.2_Jn,(kt1,2R)

. 8 ko Ki(2R)
Vi.=J (k. -R)-|— + —B Zo—— T oy
1,2 _n( 1,2 ) _R C1,2 g2 21’2) 0 g Kn(gR)_

- kt1,2D1,2_Jn,(kt1,2R)
1 Ho
g=yB*>—k; ZO=7=1/— ko= wykheeg -
0 €0
(17)

This equation replaces (4) in the anisotropic case.
Equation (16) with (17) has been solved numerically.
The elements of the permeability tensor are calculated by
(2). For a fixed value of kR, the normalized propagating
constant BR is evaluated. If the ferrite radius is stepped
monotonically, a good starting value for SR can be extrap-
olated from the calculations already done, so that the zero
is found very fast. In Figs. 5 to 8 the result is shown for the
EH,,,, the HE,,, the EH,,,, and the EH,;, mode. The first
equation of (14) reveals that for B,; , # 0 or infinity there
are always E, as well as H, components; even the modes
with the azimuthal index 0 are of hybrid character if the
ferrite is magnetized. As in Fig. 2, instead of SR the radial
wavenumber in the ferrite k()R is given as the ordinate,
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Fig. 5. Mode chart to determine the EH,;, resonant frequency of the

magnetized ferrite cylinder (¢, =12.5; p, see Fig. 4).
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Fig. 6. Mode chart to determine the HEy, resonant frequency of the
magnetized ferrite cylinder (¢, =12.5; p see Fig. 4).

which is defined as in the isotropic case as k¢
=/k*—p2 = \/,uze,ké —B2. In contrast to the isotropic
case, this is a fictitious number, because physically there is
a superposition of fields with both transversal wavenum-
bers k, and k,, in the ferrite. In certain regions one of
these becomes imaginary; the corresponding part of the
field is then guided at the ferrite—air boundary and decays
aperiodically in both directions (edge-guided modes). In
height-independent structures (stripline circulators) there
are even modes with all the field guided in this way (for
Begs < 0). There is, however, no necessity to treat them in a
special way, because resonance frequencies vary continu-
ously at the transition from radially periodic to aperiodic
modes. This is also accentuated by a recently presented
microstrip circulator, whose operating bandwidth covers
this transition [14]. In Figs. 5 to 8 the eigenvalues with
negative order n are shown with negative #,. In fact,
inverting the bias field (x = — k) is equivalent to changing
the direction of polarization. For the angle-dependent
modes, frequency splitting strongly increases with the field
in the unsaturated region, while it remains constant or
even decreases at higher fields 4, >1 to become zero again
for h, - co. It is worth noting that the lower split fre-
quency, which decreases with rising &, for low bias fields,
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Fig. 7. Mode chart to determine the EH,;, resonant frequency of the

magnetized ferrite cylinder (¢, =12.5; p, sce Fig. 4).
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Fig. 8. Mode chart to determine the EH,;, resonant frequency of the

magnetized ferrite cylinder (e, =12.5; u, see Fig. 4).

rises again for h,>1. Due to the change in pu.; the
angle-independent modes HE, and EH, also change
their resonance frequencies, namely in opposite directions.
Relative frequency splitting is largest at small /R /h; ie.,
the disks should not be too flat. Furthermore, this means a
larger distance between the E _;;, and those with a higher
order angle dependence, so that the latter cannot cause '
unwanted resonances in the operating bandwidth. Splitting
of about 40 percent can be achieved.

The diagrams in Figs. 5 to 8 have been used in {15] to
identify resonances of the S-parameter eigenvalues mea-
sured in waveguide circulators. For a ferrite rod reaching
from one circulator wall to the other, the predictions were
exact within the limits of the graphical readout. This is not
surprising, because the axial index is an integer and exactly
known. The resonant frequencies of the height-indepen-
dent modes are determined by the lateral boundaries of the
junction. They cannot be found by only analyzing the
ferrite cylinder, because the RF fields extend to infinity.
But as this is only a two-dimensional problem, the exact
analysis is not too difficult. It has been done by the
method of Davies [16].

For partial-height ferrite resonators, there is the problem
of finding the correct axial index. It has been solved in the
manner described in Section III for the dielectric res-
onator. As the hybrid character of the ferrite modes is
more accentuated, the error in the resonance frequencies
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Fig. 9. Mode chart to determine the height-independent modes of a
ferrite cylinder with magnetic wall.

can be up to 10 percent for the HE,, modes; for the
EH,,,, modes some 4 percent are reached. This is sufficient
for the identification of spurious resonances. For more
exact calculations of circulators including spurious res-
onator modes, very extensive three-dimensional calcula-
tions must be performed, as described in [6] and [17]-[19].

For completeness, a diagram for the height-independent
resonator modes will also be given; these modes play the
essential role in stripline and microstrip circulators. As
height-independent modes in radially open structures al-
ways radiate, there must be a conducting radial boundary,
in the simplest case a magnetic wall around the ferrite.
Neglecting fringing fields, it is defined by the periphery of
the metallization above the ferrite. The solution is simple
and has been given e.g. in [1] versus the magnetic splitting
Kk /. As this value also depends on frequency, this chart is
not very helpful for the design. The diagram of Fig. 9
shows instead the normalized resonance frequencies versus
the external magnetic bias field h,. The achievable fre-
quency splitting is generally larger than that for height-
dependent modes, because there are no axial magnetic RF
components which-do not contribute to nonreciprocity.

Above saturation (h, >1) the E_,; and the E_,; modes
have nearly the same resonant frequency. Both modes are
bound to the same eigenexcitation, so that one of them can
take over the role of the other. This is the case for the
“continuous tracking” circulator in [20].

V. CONCLUSIONS

Mode charts have been given for the transversal
wavenumber in ferrite rods versus the material wavenum-
ber of the demagnetized ferrite. If a piece of this rod is
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terminated by conducting walls, the exact frequencies of
the resonator installed in this way can be found by a
simple graphical procedure. If one or both ends of the
ferrite are left open, a modified procedure leads to approx-
imate values for the frequencies, which may deviate from
the true values by up to 10 percent. The diagrams are
intended to estimate the frequencies of wanted and un-
wanted resonances in junction circulators without tedious
calculations,
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